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Algebraic Points on the Genus 2 Curve C : y2 = 5(1− x5)
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Abstract. Using Abel-Jacobi Theorem (see [1], p.155) and linear systems on the curve C, we give
the set of algebraic points of given degree over Q on the hyperelliptic curve C given by the affine
equation y2 = 5(1− x5). This result extends a result of Tsuzuki, Yamauchi who described in ([3],
p.30, Theorem 7.3) the Q-rational points on this curve.
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1. Introduction

Let C be a smooth algebraic curve of genus g = 2 defined over Q. We denote by J the
jacobian of C and by j(P ) the class [P −∞] of P −∞, that is to say that j is the Jacobian
diving C −→ J(Q). Mordell-Weil Theorem states that the group J(Q) of rational points of
J is a abelian group of finite type e. g. J(Q) ∼= Zr×J(Q)torsion where J(Q)torsion and the
integer r are called respectily the torsion group and the rank of J . We denote by C(l)(Q)
the set of algebraic points of degree at most l over Q on the curve C. Let P = (1, 0) and
∞ on C. Using Abel-Jacobi Theorem (see [1], p.155) and linear systems on the curve C,
the goal of this paper is to determine the set C(l)(Q) on the curve C of affine equation

y2 = 5(1− x5). (1)

The Q-rational points on C (see [3], p.30, Theorem 7.3) are given by C(Q) = {∞, P} . The
Mordell-Weil group J(Q) of rational points of the jacobian is a finite set (see [3], p.30,
Remark 7.4). Let x, y be two rational functions over Q defined as follow:
x(X,Y, Z) = X

Z et y(X,Y, Z) = Y
Z . The projective equation of C is

C : Y 2Z3 = 5(Z5 −X5). (2)
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2. Auxiliary results

For a divisor D on C, we note L (D) the Q̄-vector space of rational functions F defined
over Q such that F = 0 or div (F ) ≥ −D; l (D) designates the Q̄-dimension of L (D).

Lemma 2.1.

• div(x− 1) = 2P − 2∞;

• div(y) = B0 +B1 +B2 +B3 +B4 − 5∞;

• div(x) = A0 +A1 − 2∞.

Proof. C : Y 2Z3 = 5(Z5 −X5) (projective equation)

• div(x− 1) = (X − Z = 0).C − (Z = 0).C
For X = Z, we have Y 2 = 0 with Z = 1 or Z3 = 0 with Y = 1. We obtain the
point P = (1, 0, 1) with multiplicity 2 and the point ∞ = (0, 1, 0) with multiplicity
3. Hence (X − Z = 0).C = 2P + 3∞ (∗).
Even if Z = 0, then X5 = 0; and for Y = 1, we have the point ∞ = (0, 1, 0) with
multiplicity 5. Hence (Z = 0).C = 5∞ (∗∗).
The relations (∗) and (∗∗) implies that div(x− 1) = 2P − 2∞.

• Similarly we show that div(y) = B0 + B1 + B2 + B3 + B4 − 5∞ and div(x) =
A0 +A1 − 2∞.

Lemma 2.2. A Q-base of L (m∞) is given by

Bm =
{
xi | i ∈ N and i ≤ m

2

}
∪

{
yxj | j ∈ N and j ≤ m− 5

2

}
. (3)

Proof. As Bm is free, it suffices to show that card(Bm) = dimL (m∞). And according
to the Riemann-Roch Theorem, dimL (m∞) = m − g + 1 = m − 2 + 1 = m − 1 as
m ≥ 2g − 1 = 3 and with the parity of m, two cases are possible:
1st case: if m is odd, then by putting m = 2h+ 1, we have

i ≤ m

2
⇔ i ≤ 2h+ 1

2
⇔ i ≤ h +

1

2
⇒ i ≤ h and j ≤ m− 5

2
⇔ j ≤ 2h− 4

2
⇒ j ≤ h − 2.

Thus Bm = {1, x, . . . , xh} ∪ {y, yx, . . . , yxh−2} and so we have

card(Bm) = h+ 1 + h− 2 + 1 = 2h = m− 1 = dimL (m∞) .

Second case: We suppose that m is even then m = 2h and we hawe i ≤ m

2
⇔ i ≤ 2h

2
⇒

i ≤ h and j ≤ m− 5

2
⇔ j ≤ 2h− 5

2
⇔ j ≤ h − 5

2
⇒ j ≤ h − 4

2
= h − 2 ⇒ j ≤ h − 3. It

follows that Bm = {1, x, . . . , xh} ∪ {y, yx, . . . , yxh−3} and so we have

card(Bm) = h+ 1 + h− 3 + 1 = 2h− 1 = m− 1 = dimL (m∞) .
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Lemma 2.3. J(Q) ∼= Z/2Z = ⟨[P −∞]⟩ = {a [P −∞] , a ∈ {0, 1}}.

Proof. Refer to [3].

3. Main results

Our main result is given by the following theorem:

Theorem 3.1. The set of algebraic points of degree l ≥ 2 over Q on the curve C is given
by:

C(l)(Q) = F0 ∪ F1

with

F0 =



x,−

∑
i≤ l

2

aix
i

∑
j≤ l−5

2

bjx
j

 | ai, bj ∈ Q and x root of the equation

(E0) : (
∑

i≤ l
2
aix

i)2 + 5(
∑

j≤ l−5
2

bjx
j)2(x5 − 1) = 0


,

F1 =



x,−

∑
i≤ l+1

2

aix
i

∑
j≤ l−4

2

bjx
j

 | ai, bj ∈ Q , a0 = 0 and x root of the equation

(E1) : (
∑

i≤ l+1
2

aix
i)2 + 5(

∑
j≤ l−4

2
bjx

j)2(x5 − 1) = 0


.

Proof. Given R ∈ C(Q̄) with [Q[R] : Q] = l. The work of Tsuzuki and Yamauchi who de-
scribed in ([3], p.30, Theorem 7.3) allows us to assume that l ≥ 2. Note that R1, R2, . . . , Rl

are the Galois conjugates of R. Let’s work with t = [R1+R2+· · ·+Rl−l∞] ∈ J(Q), accord-
ing to lemma 2.3; we have t = a [P −∞] , 0 ≤ a ≤ 1. So we have [R1+R2+· · ·+Rl−l∞] =
a [P −∞].
For a = 0, we have [R1 + R2 + · · · + Rl − l∞] = 0; then there exist a function F with
coefficient in Q such that div(F ) = R1+R2+ · · ·+Rl− l∞, then F ∈ L(l∞) and according
to lemma 2.2; we have

F (x, y) =

∑
i≤ l

2

aix
i

+ y

 ∑
j≤ l−5

2

bjx
j

 . (4)

For the points Ri, we have∑
i≤ l

2

aix
i

+ y

 ∑
j≤ l−5

2

bjx
j

 = 0. (5)
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hence y = −

∑
i≤ l

2

aix
i

∑
j≤ l−5

2

bjx
j
and the relation (1.1) gives the equation

(E0) :

∑
i≤ l

2

aix
i


2

= 5

 ∑
j≤ l−5

2

bjx
j


2

(1− x5).

We find a family of points

F0 =



x,−

∑
i≤ l

2

aix
i

∑
j≤ l−5

2

bjx
j

 | ai, bj ∈ Q and x root of the equation

(E0) : (
∑

i≤ l
2
aix

i)2 + 5(
∑

j≤ l−5
2

bjx
j)2(x5 − 1) = 0


.

For a = 1, we have [R1 +R2 + · · ·+Rl − l∞] = [P −∞] = − [P −∞]; then there exist a
function F with coefficient in Q such that div(F ) = R1 + R2 + · · · + Rl + P − (l + 1)∞,
then F ∈ L((l + 1)∞) and according to lemma 2.2; we have

F (x, y) =

 ∑
i≤ l+1

2

aix
i

+ y

 ∑
j≤ l−4

2

bjx
j

 . (6)

We have F (P ) = 0 implies the relation∑
i≤ l+1

2

ai = 0.

For the points Ri, we have ∑
i≤ l+1

2

aix
i

+ y

 ∑
j≤ l−4

2

bjx
j

 = 0 (7)

hence y = −

∑
i≤n+1

2

aix
i

∑
j≤n−4

2

bjx
j
and the relation (1.1) gives the equation

(E1) :

 ∑
i≤ l+1

2

aix
i


2

= 5

 ∑
j≤ l−4

2

bjx
j


2

(1− x5).
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We find a family of points

F1 =



x,−

∑
i≤ l+1

2

aix
i

∑
j≤ l−4

2

bjx
j

 | ai, bj ∈ Q ,
∑

i≤ l+1
2

ai = 0 and x root of the equation

(E1) : (
∑

i≤ l+1
2

aix
i)2 + 5(

∑
j≤ l−4

2
bjx

j)2(x5 − 1) = 0


.

4. Concluding Remarks

Despite the study carried out on this curve, the field of investigation is still very vast,
so even if we have determined the algebraic points of any degree on C, we still have to
explicitly determine the algebraic points of degree exactly l.
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